PROBABILIDAD DE LA UNIÓN DE EVENTOS MUTUAMENTE EXCLUYENTES

            Eventos mutuamente excluyentes y no                                           excluyentes

                                             
Eventos mutuamente excluyentes y eventos no excluyentes
Dos o más eventos son mutuamente excluyentes o disjuntos, si no pueden ocurrir simultáneamente. Es decir, la ocurrencia de un evento impide automáticamente la ocurrencia del otro evento (o eventos).
 Dos o más eventos son no excluyentes, o conjuntos, cuando es posible que ocurran ambos. Esto no indica que necesariamente deban ocurrir estos eventos en forma simultánea.
La regla de la Adición expresa que: la probabilidad de ocurrencia de al menos dos sucesos A y B es igual a:
P(A o B) = P(A) U P(B) = P(A) + P(B)
Si A y B son mutuamente excluyente:
P(A o B) = P(A) + P(B)  P(A y B)
Si A y B son no excluyentes Siendo:
P(A) = probabilidad de ocurrencia del evento
AP (B) = probabilidad de ocurrencia del evento
BP(A y B) = probabilidad de ocurrencia simultanea de los eventos A y B Eventos Independientes
Dos o más eventos son independientes cuando la ocurrencia o no-ocurrencia de un evento no tiene efecto sobre la probabilidad de ocurrencia del otro evento (o eventos). Un caso típico de eventos independiente es el muestreo con reposición, es decir, una vez tomada la muestra se regresa de nuevo a la población donde se obtuvo.

                                                MUTUAMENTE EXCLUYENTES


1.-Si A y B son dos sucesos mutuamente excluyentes y la probabilidad de A es 0,2 y la de B es 0,5. Entonces, la probabilidad de que ocurran ambos sucesos es:
Solución:
La probabilidad pedida es P(A∩C). Como son eventos mutuamente excluyentes, ambos no pueden suceder a la vez,
P(A∩C) = 0. 
2.-Se tienen cinco libros de distintas materias: Matemática, Biología, Química, Física y Lenguaje. Si se toma uno de ellos, ¿cuál es  la probabilidad de que este sea de matemática o de física?
Solución:
Sean los eventos
A ≡Tomar el libro de Matemáticas.
B ≡Tomar el libro de Física.
La probabilidad pedida es:
P(AB) = P(A) + P(B) -P(AB)  
Como A y B son eventos mutuamente excluyentes, P(AB) = 0.
Por lo tanto, la probabilidad pedida nos queda:

P(AB) = (1/5)+(1/5)-0= 2/5

Eventos mutuamente excluyentes
Los eventos mutuamente excluyentes son aquellos en los que si un evento sucede significa que el otro no puede ocurrir. Si bien suelen usarse en teorías científicas, también son parte de las leyes y los negocios. Como resultado, entender los eventos mutuamente excluyentes puede ser importante para una variedad de disciplinas.
Fórmula
La fórmula matemática para determinar la probabilidad de los eventos mutuamente excluyentes es P(A U B) = P(A) + P(B). Dicho en voz alta, la fórmula es "Si A y B son evento mutuamente excluyentes, entonces la probabilidad de que A o B suceda es equivalente a la probabilidad del evento A más la probabilidad del evento B".
 
  • Sacar una carta de corazones y una carta de espadas. Son eventos mutuamente excluyentes, las cartas o son de corazones o son de espadas.
  • Sacar una carta numerada y una carta de letras. Son eventos mutuamente excluyentes, las cartas o son numeradas o son cartas con letra.
  • Sacar una carta de tréboles roja.  Son eventos mutuamente excluyentes pues las cartas de tréboles son exclusivamente negras.
No es posible encontrar una sola carta que haga posible que los eventos sucedan a la vez.
      EVENTOS DEPENDIENTES, INDEPENDIENTES Y                                            
                              CONDICIONALES
Eventos Independientes
Dos o más eventos son independientes cuando la ocurrencia o no-ocurrencia de un evento no tiene efecto sobre la probabilidad de ocurrencia del otro evento (o eventos). Un caso típico de eventos independiente es el muestreo con reposición, es decir, una vez tomada la muestra se regresa de nuevo a la población donde se obtuvo.

Dos eventos, A y B, son independientes si la ocurrencia de uno no tiene que ver con la ocurrencia de otro.

Por definición, A es independiente de B si y sólo si:A y B, son independientes si la ocurrencia de uno no tiene que ver con la ocurrencia de otro.

Por definición, A es independiente de B si y sólo si:A es independiente de B si y sólo si:

(PnA)=P(A)P(B)


Eventos dependientes

Dos o más eventos serán dependientes cuando la ocurrencia o no-ocurrencia de uno de ellos afecta la probabilidad de ocurrencia del otro (o otros). Cuando tenemos este caso, empleamos entonces, el concepto de probabilidad condicional para denominar la probabilidad del evento relacionado. La expresión P (A|B) indica la probabilidad de ocurrencia del evento A sí el evento B ya ocurrió.

Se debe tener claro que A|B no es una fracción.

P (A|B) = P(A y B) / P (B) o P (B|A) = P(A y B) / P(A)

Probabilidad Condicional = P(A y B) / P (B) o P (B|A) = P(A y B) / P(A)

Probabilidad Condicional

Si A y B son dos eventos en S, la probabilidad de que ocurra A dado que ocurrió el evento B es la probabilidad condicional de A dado B, y se denota:A y B son dos eventos en S, la probabilidad de que ocurra A dado que ocurrió el evento B es la probabilidad condicional de A dado B, y se denota:
P(AlB)
Ejercicios
1.     si se tira un dado calcular la probabilidad de:
A caen 3 puntos o menos o
B caen 5 puntos o mas
Como son Mutuamente excluyentes AnB=0
P(AoB)=P(a)+P(B)
=P(salen 3 o menos)+P(salen 5 o mas)
=3/6 + 2/6
=5/6
2.    se tiene una urna con 50 papeles de colores 15 rojos, 5 morados, 9 verdes, 11 naranjas y 10 azules.
Cual es la probabilidad de:
A sale un papel azul o
B sale un papel rojo
P(AoB)=P(AuB)=P(A)+P(B)
=P(sale un azul)+P(sale 1 rojo)
=10/50 + 15/50
=25/50
=1/2

No hay comentarios:

Publicar un comentario